Characterization of sequences and mechanisms through which ISE/ISS-3 regulates FGFR2 splicing

نویسندگان

  • Ruben H. Hovhannisyan
  • Claude C. Warzecha
  • Russ P. Carstens
چکیده

Alternative splicing of fibroblast growth factor receptor-2 (FGFR2) mutually exclusive exons IIIb and IIIc results in highly cell-type-specific expression of functionally distinct receptors, FGFR2-IIIb and FGFR2-IIIc. We previously identified an RNA cis-element, ISE/ISS-3, that enhanced exon IIIb splicing and silenced exon IIIc splicing. Here, we have performed comprehensive mutational analysis to define critical sequence motifs within this element that independently either enhance splicing of upstream exons or repress splicing of downstream exons. Such analysis included use of a novel fluorescence-based splicing reporter assay that allowed quantitative determination of relative functional activity of ISE/ISS-3 mutants using flow cytometric analysis of live cells. We determined that specific sequences within this element that mediate splicing enhancement also mediate splicing repression, depending on their position relative to a regulated exon. Thus, factors that bind the element are likely to be coordinately involved in mediating both aspects of splicing regulation. Exon IIIc silencing is dependent upon a suboptimal branchpoint sequence containing a guanine branchpoint nucleotide. Previous studies of exon IIIc splicing in HeLa nuclear extracts demonstrated that this guanine branchsite primarily impaired the second step of splicing suggesting that ISE/ISS-3 may block exon IIIc inclusion at this step. However, results presented here that include use of newly developed in vitro splicing assays of FGFR2 using extracts from a cell line expressing FGFR2-IIIb strongly suggest that cell-type-specific silencing of exon IIIc occurs at or prior to the first step of splicing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence.

Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a ...

متن کامل

A Non-sequence-specific double-stranded RNA structural element regulates splicing of two mutually exclusive exons of fibroblast growth factor receptor 2 (FGFR2).

Alternative splicing of fibroblast growth factor receptor 2 (FGFR2) mutually exclusive exons IIIb and IIIc represents a tightly regulated and functionally relevant example of post-transcriptional gene regulation. Rat prostate cancer DT3 and AT3 cell lines demonstrate exclusive selection of either exon IIIb or exon IIIc, respectively, and have been used to characterize regulatory FGFR2 RNA cis-e...

متن کامل

Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA.

Splicing of pre-mRNA transcripts is regulated by consensus sequences at intron (intervening sequence, IVS) boundaries and the branch site. In vitro studies have shown that the small introns of some genes also require intron splice enhancers (ISE) to modulate splice site selection. An autosomal dominant form of isolated GH deficiency (IGHD-II) is caused by mutations in IVS3 of the GH-1 gene that...

متن کامل

Human Disease-Causing Mutations Affecting RNA Splicing and NMD

Submit Manuscript | http://medcraveonline.com Abbreviations: NMD: Nonsense-Mediated mRNA Decay; ISE: Intronic Splicing Enhancer; ESE: Exonic Splicing Enhancer; ISS: Intronic Splicing Silencer; ESS: Exonic Splicing Silencer; PTC: Premature Termination Codon; ASC: Adenosquamous Carcinoma; NAS: Nonsense-associated Altered Splicing; NASRE: NonsenseAssociated Altered Splicing of a Remote Exon; ASO: ...

متن کامل

A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis

Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc leve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006